Medical Image Denoising based on Log-Gabor Wavelet Dictionary and K-SVD Algorithm

نویسندگان

  • Mohammed Elsayed
  • Mohammed Aly
چکیده

Medical image denoising is the main step in medical diagnosis, which removes the noise without affecting relevant features of the image. There are many algorithms that can be used to reduce the noise such as: threshold and the sparse representation. The K-SVD is one of the most popular sparse representation algorithms, which is depend on Orthogonal Matching Pursuit (OMP) and Discrete Cosine Transform (DCT) dictionary. In this paper, an algorithm for image denoising was designed to develop K-SVD by using Regularized Orthogonal Matching Pursuit (ROMP) over log Gabor wavelet adaptive dictionary. To evaluate the performance of the proposed techniques, the results were compared with the results of DCT and Gabor wavelet dictionary. The numerical results show that the performance of our algorithm is more efficient in medical image denoising.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Medical Image Denoising based on Log-Gabor Wavelet Dictionary and K-SVD Algorithm

Medical image denoising is the main step in medical diagnosis, which removes the noise without affecting relevant features of the image. There are many algorithms that can be used to reduce the noise such as: threshold and the sparse representation. The K-SVD is one of the most popular sparse representation algorithms, which is depend on Orthogonal Matching Pursuit (OMP) and Discrete Cosine Tra...

متن کامل

Medical Image Denoising based on Log-Gabor Wavelet Dictionary and K-SVD Algorithm

Medical image denoising is the main step in medical diagnosis, which removes the noise without affecting relevant features of the image. There are many algorithms that can be used to reduce the noise such as: threshold and the sparse representation. The K-SVD is one of the most popular sparse representation algorithms, which is depend on Orthogonal Matching Pursuit (OMP) and Discrete Cosine Tra...

متن کامل

Image Denoising using K-SVD Algorithm based on Gabor Wavelet Dictionary

Image denoising problem can be addressed as an inverse problem. One of the most recent approaches to solve an inverse problem is a sparse decomposition over overcomplete dictionaries. In sparse representation, images are represented as a linear combination of dictionary atoms. In this paper, we propose an algorithm for image denoising based on Orthogonal Matching Pursuit (OMP) for determining s...

متن کامل

Comparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions

There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...

متن کامل

An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm

K-SVD is a signal representation method which, from a set of signals, can derive a dictionary able to approximate each signal with a sparse combination of the atoms. This paper focuses on the K-SVD-based image denoising algorithm. The implementation is described in detail and its parameters are analyzed and varied to come up with a reliable implementation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016